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M O D I F I E D  S T E F A N  PROBLEM': '  

G. Horvay 

Inzhenerno-Fizicheskii Zhurnal, Vol. 8, No, 6, pp. 779-800,  1965 

In analytical studies of solidification, one usually prescribes the shape of the growing solid and aims to de- 
termine the velocity of growth as a function of the various pertinent parameters. The present study assumes 
the velocity of growth and aims to determine the temperature of the growing surface, for the case of sim- 
ple geometry. The former class of problems is appropriate for study of nucleus growth, and the latter for 
study of dendrite growth. 

L Introduction 

Stefan's problem requires solution of the heat conduction equation in two phases, solid and liquid, separated by a 
moving interface on which heat is evolved proportional to the difference in temperature gradients in the two media, the 
interface being assumed isothermal. Of principal interest is the speed of motion of the interface. It was shown in the 
last century by F. Neumann and J. Stefan (see, e . g . ,  Carslaw-Jaeger [1]) that for the one-dimensional case of  plane 
front motion the relation between interface position R and time t is 

R = 

(K is the thermal diffusivity of the liquid.) The liquid, of original temperature Too < Tf (Tf is the freezing temperature), 
extends initially from x = 0 to x = Go to the right; the solid of original temperature Tf extends from x = 0 to x = - Go on 
the left. ** The "freezing parameter" ~ is a function of the dimensionless undercooling (Tf-Too)/X where X is the heat 
of fusion. It was subsequently shown by Ivantsov [3], Zener [4], and Frank [5] that spherical and cylindrical nuclei also 
obey the parabolic law of growth (1). The shape-preserving square root growth law (1) was subsequently shown by Ham 
[6], and again by Horvay-Cahn [7] to hold also for the general ellipsoid. *** In the latter case, R denotes an "equivalent 
radius. " The dimensionless quantity ~ =R/2]/~ is denoted in [7] by al/2, and is referred to, following Frank, as 
"reduced radius. " 

A problem of interest equal to the original Stefan problem is the case where, in place of assuming an isothermal 
interface temperature and seeking to determine the speed of  motion of the interface, one prescribes the motio n of the 
interface and seeks to determine the temperature field in the two media; in particular, one wants tode te rmine  t h e t e m -  
perature on the interface. From the preceding discussion it is clear that, if 

v = R = 13 , / - iTF  (2) 

is the prescribed velocity of motion, then the interface temperature is (spacewise) isothermal and (timewise) constant 
for planar, cylindrical, spherical, and, in fact, for general ellipsoidal growth. Of greatest interest to metallurgists is 
the case where the freezing front moves forward (say, in the positive x direction) at constant speed V; this is the case of 
f o r m ~  or "dendritic" growth. **** It was first shown by Ivantsov [3] that a paraboloid of revolution with an 
isothermal constant temperature interface grows at constant velocity and, conversely, if  the paraboloid grows at con- 
stant velocity, then the interface temperature is isothermal and constant. This solution was subsequently extended by 
Horvay-Cahn [7] to arbitrary paraboloids. 

There are several avenues of progress beyond the ellipsoid and paraboloid problems one may seek to follow. One 
may ask, for instance: State all shape-(or form-) preserving surfaces that are isothermalsurfaces 0fconstant temperature 
and represent a freezing front moving (A) as square root function of time, (B) as linear function of time. (C) Are there 

*Originally published as General Electric Research Laboratory Report No. 64-RL-3733M. 
**In this report we are concerned with the case where the liquid is undercooled, so that the latent heat evolved is a b -  

sorbed by the liquid. In many other analyses one presupposes Too -~ Tf, T_oo < Tf (see, e . g . ,  [1], or Horvay-Henzel 
[2]); then the latent heat evolved is conducted into the solid. 

***"Shape-preserving": the closed surface of the nucleus at time t is similar to its former form at to, but larger by fac -  
tor R(t)/R(t0) in all dimensions. 
****"Form-preserving": the open surface of the semi-infinite dendrite at t ime t is identical to the form at the previous 
time t0, but is displaced by distance V ( t - to )  in the direction of growth. 
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isothermal constant temperature shape- (or form-) preserving surfaces that grow with a law different from the t 1/2 or t* 
law?* It is surmised that ellipsoids and paraboloids exhaust classes A and 13, and also C, but no formal proof is available. 
(D) How do dumbbell-shaped (or other nonconvex) surfaces grow; are these surfaces stable, or do they have a tendency 
to split ? iThis question has been answered by Mullins-Sekerka [8] for infinitesirnal departures from sphere and plane 
when the velocity of growth is very small. ) (E) If a constant temperature shape-preserving surface grows with a t 1/z (or 
some other) law, how does the temperature vary with time if a different growth law (say, a t I law) is imposed ? (This 
question has been answered by Kreith-Romie [9] for planes and inward freezing spheres and cylinders, using the t 1 law. ) 
(F) Investigate nonparaboloidal form-preserving growth, and determine the variation of temperature along the freezing 
surface. (G) Refine the foregoing models by taking into account the effect of (a) density change upon freezing, (b) de- 
pendence of freezing temperature on surface tension and fluid pressure, (c) anisotropic materials properties; (d) replace 
the assumption of a unique freezing temperature Tf (corresponding to pure substances) by the assumption that freezing 
.... occurs over a temoerature~, ranzen Tupper ~ Tlowe r (corresponding to alloys; in Such a case 0no must consider also (e) 
redistribution or somte in the liquid solvent during the freezing process).~ 

Horvay has considered question (A) in [10a] for planes, spheres, cylinders, paraboloids, and question (B) in [10b] 
for spheres. ** Various aspects of and various approximations to questions (8) through (E) and also iF) have been considered 
by Tiller [14], Jackson [15], Ivantsov [16], Temkin [17], Mullins-Sekerka [8], Hamilton [18], and previous to them, in 
a less complete manner, by many others. (For discussion and references to earlier literature, see, e .g . ,  Ruddle [19], 
Chalrners [20], Turnbull [21], and Veynik [22].) 

The list of questions could be considerably extended by referring to problems related to work carried on in many 
countries pertaining to (H) specific engineering structures, such as casting of finite slabs, finite cylinders, and other 
finite geometries, subject to various boundary conditions imposed by commercial molds (as contrasted with the case 
where nuclei or dendrites grow in infinite baths). These investigations are carried out by experiments (see, e .g . ,  Pellini 
and his school [23a], Westwater and his school [23b], [19] and bibliography, and many others); by boundary layer type 
calculations (Goodman [24], Veynik [25]); by difference equation methods to be used in conjunction with digital corn- 
puters (e. g., Douglas-Gallie [26a], Murray-Landis [26b] and bibliography, Ruddle [19] and bibliography, and many 
others); by simplified analytical methods (on occasion these may be of the form of two simultaneous difference equa- 
tions, but compact simplified formulas rather than digital programming is the aim) such as London-Seban [27], Landau 
[28], Adams [29] Horvay [30], 8ankoff-Hamill [31], Citron [82]; by passive analog methods, e .g . ,  Paschkis [33]; and 
by active analog methods, e .g . ,  [19, 80], and Baxter [34]. 

Parallel to, but independently of, the studies oriented toward the practical aspects of the subject, exhaustive re- 
search is being carried on into related abstract mathematical problems (a few representative papers are listed among 
the references of [31b] and item [88] of our bibliography) discussing primarily existence of solutions, their uniqueness, 
and their construction (frequently "in principle" only, not in practice). 

In the present report and its sequels [36a, b] we shall be concerned with the constant velocity dendrite problem iF). 
The problem of form-preserving growth, with speed of growth prescribed, interface temperature unknown, is ifrom a 
mathematical point of view) intrinsically more tractable than the nucleus problern; where interface temperature is pre- 
scribed, speed of growth is unknown. In fact, this observation has frequentiy led to efforts to solve the nucleus problem 
in an appropriately reformulated way, as a dendrite problem, by means of integral equations; see, e .g . ,  Lightfoot 
[3~a], Selig [87b], Boley [37c], and others [88]. But there is a compensating difficulty. Whereas the nucleus problem 
as usually considered deals solely ([10b] is an exception) with an exterior heat conduction problem (the temperature 
needs to be determined only in the liquid because throughout the solid the temperature is a constant, Tf), the dendrite 
problem requires solution also of an interior heat conduction problem (since, except for the paraboloid, the interface is 
nonisothermal); the two solutions are to be matched at the interface. The situation simplifies greatly if the material 
properties of the frozen phase may be assumed equal to those of the liquid phase, because then the latent heat genera- 
tion may be handIed by the method of sources, as developed by Rosenthal [38]. **~ Subject to this assumption we shall 
determine in what follows some particulars of the temperature field about a growing dendrite, which, in Section IV, is 
of the form of a two-dimensional slab with an elliptical cap and in Section V is of the form of a three-dimensional cyl- 
inder with a spheroidal cap; this is known as Fisher's problem [41]. 

*We use the simple expression "the surface grows" to imply the growth of the nucleus or dendrite enclosed by it. 
**Previously, Scriven [11] has considered the growth of a spherical nucleus into a denser melt, but he accounted only 

for the effect of fluid velocity on temperature, and disregarded the more exciting topic, the effect of fluid velocity on 
fluid pressure. The related problem of bubble formation (cavitation, boiling) has been extensively treated; see, e .g . ,  
Plesset [12] and its exhaustive bibliography, as well as Zwick [13a], Forster-Zuber [18b], etc. 

***The method of sources is also used by Forster [39], Forster-Zuber [lSb], and Yang-Clark [40] in somewhat related 
problems. 
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II. The Source Solution 

Let a plane source parallel to the YZ plane, of intensity q" (Btu/ft ~--hr), move in the X" direction at constant vel-  
ocity V with respect to the fixed frame ~r /~  in a conducting medium of constant material  properties, k = conductivity 
(Btu/ft-hr-deg); c = specific heat (Btu/lb-deg), 7 = weight density (lb/fts); X = heat of fusion (Btu/fts). Then the one- 
dimensional heat conduction equation 

aT~O-~= nO2TIO-X 2 (3) 

may be converted by the change of variables 

x= -vT, z - 2 ,  t=T (4) 

to one referred to the frame ZYZ moving with the plane front YZ, and the equation, for steady state, becomes 

VOT/OX "4- ~O2T/OX 2 = O. (5) 

This equation, subject to the boundary conditions 

X =  + oo- T • 0 ;  X = 0 :  - - k O T / O X = q "  (6) 

is solved by 

qtr qpr 
X > 0: T = - -  exp (-- VX/~); X -< 0: T ----- . (7) 

c y V  c y V  

If instead of a plane source q", we consider a point source q(X', Y', Z') (Btu/hr) moving in the positive X direc- 
tion in a three-dimensional medium (see Fig. 1), then Eqs. (3), (5) are replaced by 

__2 
c]T/~ = f< V T, VOT/OX ~- K V 2 T --= 0, (8a, b) 

where bar over V 2 means that differentiation is to be with respect to the barred coordinates, The solution for the bound- 
ary conditions 

X = + o ~ :  T = O ;  (X, Y, Z ) = ( X ' ,  Y', Z'): 

- -4~kL2  .0T = q ,  
OL 

(9) 

Z height, 

L 2 = ( X - -  X') 2 + ( g - -  g,)2 + (Z - -  

T -- e x p [ - - V ( L  + X - -X ' ) /2~ lq /4~kL .  (to) 
oo 

By integration S dZ we then obtain in a two-dimensional medium, or in a three-dimensional medium per unit 

with line source of intensity q'  (Btu/ft-hr) traveling in the positive ~ direction, the solution to Eq. (8b): 

T - -  q' 
2 ~ k  

exp [-- V (X - -  X')/2~I X-Ko(LV/2~), L ~ = (X - -  X') ~ § (Y  - -  g')~ (~1) 

(V 2 is now the two-dimensional Laplacian) subject to the boundary conditions 

o r  
X =  oo. T--=0; (X, Y ) = ( X ' ,  Y'): - - 2 ~ k L ~ - - - q ' .  

OL 
(12) 

These results are derived in Rosenthal's paper [as1 and, differently, also in Carslaw-Jaeger [1, p. 266. ] Notethat 
Carslaw-Jaeger assume the source to move in the negative X direction, so they write (using the present notation) X ' - X  

where we write X - X ' .  

Assume now that a dendrite grows in the X" direction. Then to each surface element dA (whose normal is at angle 
0 to X; see Fig. 1) there is attached a source of strength 
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dq(X',  -Y', Z') --- yLV cosOdA(X', Y', Z'), 

and the resultant temperature at point (X, u Z), on introducing (13) into (10) and integrating, becomes 

(13) 

T(X, Y, Z)--'-- Y~'V4~ k ~exp[--V(L-b X--X')/2~)]. c~ d A . L  (14) 

When the surface is a surface of revolution, with equation 

R = R (--  X'), R~ = Z" + Y", 

then, noting 

dA cos 0 = Rd ~ dXdR/d(-- X') 

(r is the latitude angle of dA with respect to the XY plane), Eq. (14) reduces to 

(15) 

(16) 

0 ' 2 ~  

4=k L d(--X')  
- - ~  0 

- -  exp[-- V(L+ X-- X')12Kld% 

L ~ ~ ( X  - -  X')  * + ( Y "  R cos  cp) * + (Z - -  R sin q0) *. 

This formula was previously given by Ivantsov [16]. 

........ i 

(x, gz) 

/ o :, 

(17a) 

(17b) 

Fig. 1. The growing dendrite. X, Y, Z is a fixed co- 
ordinate system; the coordinate system X, Y, Z is a t -  
tached to the traveling dendrite. (The location of the 
origin of the X, u Z system is selected at conven- 
ience. In Fig. 1 it is at the dendrite tip; in Fig. 3 it 
is at the ellipse center. ) 

For a cylindrical dendrite, symmetr ical  with respect to the ZX plane, having generators parallel  to the Z axis (and 
a longitudinal section somewhat like the one in Fig. 1), the line source solution, with 

dq' (X', Y') = yL V cosOds(X',Y'), (18) 

applies (ds is the line element),  and 

~ o  

T(X, Y)=- (yLV/2~k )~ exp [-- V(X -- X')/2K]IKo(VL+/2K) + Ko (VL_/2K)ldY, (19a) 
o 

'L2+ = (X  - -  X ' ) i -+-  (Y ~ r ' )~ ,  (19b) 

- . X  ~ = - -  X '  (IT") (19c) 

is the expression of the temperature distribution. Equation (19c) is the equation of the profile. 

For the plane front dendrite one obtains'from (7) on substituting 

q" -- y~,V: (20) 

the result 

x>/O, 
1-dimensional: (21a) 

x ~ 0 ,  

e ( p ( 2 P e x )  
U ~.__~ " P 
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where 

u =cT/~ . ,  P e  = Vd/2K, r = R/d,  l = L / d ,  x = X / d ,  etc. (22) 

are dimensionless temperature, dimensionless speed of  advance (Peclet number), and dimensionless distances. Here d is 
an arbitrary reference distance. For convenience we rewrite also gqs. (19a) (17a) in dimensionless forms: 

2-dimensional: u = (Pe/~) ~ exp [-- Pe (x - -  x')] [Ko (Pc I+) + Ko (Pe I_)] dy'; (2tb) 
0 

0 2r~ 

3-d imens ionah  u = (Pe/2r 0 ; dx' ;.rl d(--x')dr exp [ - - P c ( / + x - - x ' ) l d %  (21c) 

- - ~  0 

III. Fisher's Quasi-static Approximation 

The dimensionless temperature about a sphere freezing at temperature T(R) = Tf into an undercooled melt  of origi- 
nal temperature T(~o) : Too is (see, e . g . ,  [7], gq. (69a)), 

u = u~ H (oO/H (~), H (~) = J ~-,/2 exp  ( - t*) d t~, 
(u 

(T r --T|163 ~ uf = Qv, exp (s = 2a [1 - -  l /=-~-+ 29, + ...], 

(p is the radiat coordinate; R the radius to the freezing front. ) Its gradient at the front is 

(23a) 

(2ab) 

(23c) 

Ou R 2q~ 
Op 9 

(24a) 

ttf , when f~ (i.e., Uf)<< 1, (24b) 
R 

or, using dimensionless distances r = p/d, R' = R/d (d = reference length) 

O~ R" Uf for ~ ,  U f ~ l .  Or R' 
(24c) 

This, as was pointed out by Fisher 15 years ago (in an unpublished letter to B. Chalmers [41]; see also [8a]), agrees 
with the surface gradient obtained by solving the steady-state heat conduction equation of the sphere exterior (K = 2) 

a2T K aT 
~ +  = 0  

O r 9 d? 
(25a) 

for the boundary conditions 

One finds, indeed, that 

T (R) = Tf, T (oo) = T . .  (2~b) 

T=(T~--T~)R/p+T~,  0-~,o] --n 
Tf -- T. 

R 
(26a, b) 

in accordance with (24b, c). 

Using this observation as a starting point (namely, that for very small undercoolings the temperature field about a 
freezing sphere may be determined as for a static sphere, and hence, (26b) holds). Fisher set the heat released by a 

cylindrically tailed half sphere moving with velocity V 
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(27a) n 
P 

t = Z.'y~ R2V, 

equal to the heat carried into the liquid by conduction 

H~ = [k (T~ - -  T |  2re R ~, (27b) 

(he ignored the spherical nonsymmetry of the configuration), and obtained 

u~ = (T I - -  Too) c lk  ~- RVI2~ = Pe.  (28) 

Thus he found that (at least near the tip of the sphere, where the present approximation is expected to be the most sat- 
isfactory) the freezing temperature uf was Pc, (Fisher then went on to other considerations: by taking into account surface 
tension he determined a relation between R and V through the requirement (see also [17]) that the radius R of the den ~ 
drite cap should be that which maximizes V. However, we shall not get involved in these considerations.) 

Q 2  h ,, 

10"2 

- l 

tO- 3 "1// 

~ ~- 1.0 
2/8 

,i'"lll 

,I/// 
;;'ir 
//// - b  

/// 1 
~ z  to ~ tO pe 

Fig. 2. Variation (with speed of growth, Pe = VR/2~) 
of temperature at: 1) Tip (ut); 2) cylinder hemisphere 
(slab-semicircle) junction (uj); 8) origin (u0r) of the 
cylindrical dendrite with hemispherical cap (slab den- 
drite with semicircular cap). a) Cylinder with hemi- 
spherical cap, b) slab with circular cap. 

The present study stemmed from the desire to establish a more accurate picture of the temperature distribution 
along the moving dendrite. Indeed, we shall find in (75) that at the tip 

I 0.94 Pe ,  P e  (< 1, / 

u t " "  ] 0./518, Pe  = 1, 

L 1 -- (1/Pe) .  Pe  >> 1, 

(29a) 

whereas at the juncture of sphere and cylinder [see (67)], 

0 . 4 2 P e ,  P e ( ( 1 ,  

ui~--- 0.266, Pe----- 1, 

2 /3 ,  Pe  ) )  1, 

(29b) 

and very far from the tip 
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Ufa r --~ 0.  (29c) 

So it is seen that the very simple Fisher approximation gives the right order of magnitude for ut when Pe << 1, u t, uj, 
Uor (the temperature at the sphere or circle center, Fig. 3) are plotted in Fig. 2 vs Pe forthe cylinder with sphericalcap 
and the slab with circular cap, on the basis of the formulas of Sections IV and V. Clearly, the spherically capped den- 
drite becomes hotter than its two-dimensional counterpart, because it involves more heat source area per unit volume. 

On repeating the above considerations for the slab with a circular cap, (23) must be replaced (see (69b) of [7]) by 

u = uf l  (to)/H (f~), 

= f l e x p  (g2)H(fl) = fl (In uf 
\ 

H(~o) = - i  t~-x e x p ( - - t ~ ) d ~ ,  
~u 

1 1 
- - + f l l n  
1.781 ~2 1.781 

+ o _ ~ _  ... ) .  

(ao) 

Noting that for f~, uf << 1 the inversion of the uf, r relation gives 

the Eqs. (24) become replaced by 

f~---uf ( In  1 ) -x  
1.781 u~ 

(31) 

Oue.= 2fl = 2ur/ln 1.781 u r 
t 

Or R' R'  
(32) 

and (27a, b), (28) by 

H; 2R ku V, Hi  .= ~ k 2~2 = ~ :  R, (33a, b) 
c R 

u r ( l n  1 ) -~ 
1.781 uf 

RV 2Pc  2Pe  ~/2 
= f~ -- - - - ,  u~ = ~ In - -  . (34a, b) 

~ ~ ~ 1.781 Pe 

(34b) compares with the results established in Section IV: 

[ 2Pc In 2 P e ( ( 1 ,  
~ 1.78~ Pc '  

ut = [ 0.709, Pe  = 1, (35a) 

/ 1--(U2 Pe), Pe >) 1, 

ttj = 

2Pe  1 - -  In Pe  ( (  1, 
1.781 P e '  

0.469, Pe  = 1, 

2 ( 1 - - e x p  ( - -  Pe)/1/~-P--~), P e ~  1, -5- 

(35b) 

uf ~ 0. (35c) 

k is noted that for Pe << 1 the value (34b) is some mean of (35a), (8fib). However, in the present instance the results 
�9 (32), (34) cannot be obtained by a Fisher type analysis. The reason for this is that solution of (25a) for K -- 1 (cylinder) 

gives 

T = [Tf In (R~176 + T~ In (9/R)]/In (R~/R), (36a) 

where the imposed boundary conditions are 
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T ( R ) = T p  T(R•)= T. ,  oo > R ~~ > R, (36b) 

and the passage to R ~ --* ~o cannot be undertaken. 

IV. The Slab with an Elliptical Cap 

Equation (21b) reduces for a slab, 2R wide, and having an elliptical cap (see Fig. 3) to 

,~(x, y ) =  

a 

P e f  x' exp [-- Pe (x - -  x')] 
a , ~ / -  a 2 -- X '2 

o 

"/[Ko (Pe l+) q- Ko (Pe l-)l  dx', / ' , ,  

u (o, y) = - -  

1 

Pert ; ex p (Pea V 1 - -  Y")[ Ko (Pe I+) -{- Ko (Pe/-) l  dg', 
0 

where 

(xQa = ) + y" = 1 (38a) 

is the equation of the cap referred to R as unit length, and 

Pe = VR/2K, 12:: = (y -~ g,)2 + (X - -  x')  2. (38b) 

On denoting 

o = Pe ( a - -  x'), t 2 = 2Pe o/a (39) 

(37a) assumes at the tip (x, y) = (a, O) of the ellipse the ex- 
pression 

�9 1 f f  

~ 7j~ 
Fig. 3. Slab dendrite with 
elliptical cap. 

Pea  
2 " Pea  - - ~  

u t = - -  j exp (-- o) Ko 
a ] / o  (2Pe a - -  o')' 

0 

[ 2Pe 
a 

= 

Pea  2; 
0 

exp ( _  a ) . , / - 7 p - 7 -  [ 1 3 o _ _ _  

~/ [ _ ~  4 Pea  32 ~ "'" K ~  a 1@ 

(37a) 

(37b) 

(40a) 

--a--a2--~ ( a 2 - - | ) 2  u2 ]}  d f f :  

4- 4aPe 32a 2pe ~ "'" 

pe~r,3 - 
22_; exp(_at=/2Pe)(  1 3 t 2 5 

8 Pe 2 128 
0 

x 

t4 ) 
oo~ 

p e  4 

a ~ - -  1 t3 (a2-- 1)2 P ] dt = 
Ko t +  8Pe  2 128Pe 4 "'" 

(40b) 

P e l / ~  

3 t 2 (a2 - -1 )2 t6 - -  10t4 1 
p--/~ + -2--s ~ ~(o ( t ) -  

8Pe 2 16Pe 2 . 256Pe ~ 
(40c) 
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For Pe >> 1 the integral  is exponential ly small ,  and noting 
peV~ 

oiexp(--aF) lnK"(/)dt=2n-lF(  n + v - k l  ) ~  �9 F ( n - - ' ~ ' 4 - 1 / - 2 -  , • 

• [1 (n+,,-+ 1 ) ( n - - ~ + l ) ~ . +  
1! 

-Jr (tz q-- ,~ 4,-1)(n-4- v-,'- 3)(n--,~-q- 1 ) ( n - - , ~ + 3 )  : ~ . . . ] ,  

2[ J 

which results from* [TII, p. 132, No. 25] and [FI, pp. 264, 278], (40c) leads  to 

a 3 a 2 ( 15a 2 -~- 9) a 15 
u t = 1 - k  . . . .  -4-, 

2Pe  4 Pe 2 8Pe  a 16 

(7a 2 + 12)a 2 

pe  4 

For Pe << I one finds, on the other hand, to Pe 2 terms, the ascending series 

(41) 

(4Od) 

I I t  - -  

1 

2P~ 1 s l "~ V s ( 2 - s )  [1 - a p e s ]  • In 
2 1 

y Pe 2 
l n [2 s -k  (a 2 -  1)s 21 } ds ~--- 

Y P e V i q - a  "~ 

po[  ] 
_ _  "- ~ 1 - t - - - -~- -I - (a  2 -  1 ) C l ( a )  - -  

(42a) 

where 

p e 2 a  

2~ 
[@ -k 1 - - 2 . 9 4  q - (a  2 -  1)C2(a) (42b) 

lny = In 1,781 = 0,5772 = Euler-Mascheroni constant, 

1 

Cl(a)  = 2 + ( a  ~ -  l ) s  
o 

ds, 

(43a) 

(43b) 

1 j' 
o 

( 1 -ks) ] /S  (2 - -  s) - -a rc  cos s (43c) 

and we have ut i l ized the formula obtained by numerical  integration 

1 

S arc cos u du = 2.94. (43d) 
1 - - u  

0 

Formulas (42b) and (40d) are almost usable up to a : Pe = 1. For a = Pe = 1 the former gives 0.64 (too small  because 

the next term in (42b) is positive),  the la t ter  suggests a value between 0.7 and 0 .8 .  A numerica l  integration by formu- 

la (50) wil l  show that 

*References [42a, 42b] are denoted by iT]  (Tables) and iF] (Functions), respect ively .  
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a = Pe = 1 : u t = 0.709. (44) 

For the origin (x, y) = (0, O) formula (37a) reduces to 

a j' x'exp,Pe,,  olPe ' 
--//'Or = ' = 

�9 i ~ a  V a 2 . - - - -  x I~ 

o 

(45) 

Noting [TI, p. 138, no. 12; p. 136, no. 28] (the latter is valid also for Re Pe < 0), it leads for the case of the circle, 
a = 1, to the closed formula* 

Uor = Pe Ko(Pe) I ~- @ l x ( P e ) - } - L ~ ( P e ) ] .  

Fora ~1 ,  Pe<< 1, (45) gives, t oPe  2terms 

(46) 

a > 1: 2Pe 2e a Pe 
ttor - -  Ill. 

a ~  1: ~ y P e  , 
[(a = - -  1)-'/, in [(a -I- f ~ - - l ) / ( a  - -  V ' a ~  l)l } _ 

X [2 (1 - -  a=) - / ,  arc cos a 

2 y Pe ' 
(47) 

1 

0 

- - l n { a 2 + ( 1 - - a ~ ) u } d u .  

For a r 1, Pe >> 1 a (not very pleasant) numerical evaluation of (45) is recommended. 

For a slab with a circular cap, a = 1, (37a) leads in polar coordinates 

x' = c o s 0 ,  y ' = s i n 0  

for points along the arc 

x = c o s O ,  y = s i n O  

to the expression 

(48a) 

(48b) 

[(  ) Pe~ exp(- -PecoSO)o y e x p ( p e c ~  K0 2Pesin 0 + 2 0  + 

+ K 0 ( 2 P e s i n  0 - -OI) ]c~  
(49) 

At the tip, ~ = 0, this becomes (for arbitrary Pc) 

ut = u (1,0)  = 2Pe exp(-- Pe) 'X ; Ko( exp (Pe cos O) 2 Pe sin 
0 

o) cos0d0 = 
2 

*L~ (Pc) are Struve's functions. For Pe >> 1: 

2 ' lPe)  l l (Pe)  2 ( l ~  1 ) L 0 (Pc) = I o (Pe) - -  ~---~, L1 = ~ ~ �9 
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t /v f  
4Pe ~ I - -2X~ 

-- ~ -  V'I - - -~ exp (- -  2 Pe )~z) K0 (2 Pe ~) d )~. 

0 

This expression lends i tself  to convenient  numerical  integration. 

For the juncture (x, y) = (0, 1) of general  el l ipse and stab (37b) reduces to 

1 

ui=-- - -  ~ exp ( P e a ( l - - y ; ) ' / ,  X ( K o { P e [ ( 1 - - y ' ) 2 + a S ( 1 - - y " ) l V ~ }  n- 
o 

+ Ko {Pe[(1 + ~')~ + a'a(1 -- y'~)l'/~}) @', 

and we obtain in a one- te rm approximation 

1 

V - - - P - ~ e ;  exp [pea  (1 y " ) v q X  Pe>>l:  u i ~  

(5O) 

(5t) 

X !exp ( - -  Pe [( 1 - -  y,)s -t- a s ( 1 --  y")]*/~ } 
[( 1 - -  y ,)u + a s (1 - -  y'~)l  '/* 

+ exp {-- Pe [(1 + y,)s + a2(1 ~ y,')]l/~} 
1(1 + y,)2 ~_ aS(1 _ y,~)l v, 

This formula may be spec ia l ized  to 

V Pe a2C  1, (aPe)2))  1: %.~  - - f ~  exp( - -  Pea  2) ;< 

2 

X S t-v~ exp l - -  Pe ( 1 -- a~/2) t + Pea  (2/--  F)vq dr, 
0 

2 
a 2 = l :  u i~_-~-erfv~Pe -, 

dy'. (52) 

(S3a) 

(53b) 

a2))  t" 
2 

u i ~--- VPe/2r~ a .f (2t --/2) -'/" ,v, 
0 

X exp [-- Pe tvff2a (2 --  t)vq dt. 

For Pe << 1 an approximation to Pe 2 terms gives 
1 

Pe f { a2)2 u i = ~  ( l + P e a l / l _ y  '2) 21n 2 1 l n [ y " ( 1 - -  - 
y P e  2 

- -  2y '2 ( 1 + a 4) -~- ( 1 -t- a2) 2 l} dy', 
which, on noting the definite integral 

1 V e  ~( 1 --f)l/~ l n ( 1  - -  y~)v, dtj = ~ l a - - -  
4 2 

0 

[this is obtained from* (GHII, p. 79, no. 52a) by simple substitution], leads to 

(53c) 

(54) 

(55} 

* Reference 43 is denoted by GH. 
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a~<<l: u j =  2Pe [ ( 1 +  Pea~  } l n - ~ e + l n  e aPerc l n @ ]  
- -  1 

4 -  2 + 4 
(56a) 

(56b) 

a2>)l ,  (aPe)~<<l: ui= 2Pe [ ( i +  P e a = )  2 e aPe'x 
--7- - - 7 - -  x l . - -  + - -  a~Pe ~ 4 

2] I n - - ~  . (~6e) 

Finally, when lyl < 1, Ix I >> 1, one may write 
% 

l+ =lxil(l--x'/x)=-+-(y'-T - V)Vx=lV'~lx:l 1--  �9 , 
- x 2 x 

(57) 

and (37a) becomes for Pe >> 1 

l x { - >( exp [-- Pe (x -- x' + I+)1 [ I7 'h I 
Ufar = a --fig- I / a = -- x '~ 8 Pe 

0 

+ ...1 + 

+ exp [-- Pe (x --  x' + l_)] [ l -v '  1 l - v ' +  ... l I d x ,  
8 Pe J 

(58) 

from which there results 

Pe >> 1: 

y = O .  x>>l:  Ufarm ~ e x P ( - - 2 P e x )  X 1 8Pex  

+ I .(2aPe)] + ~ a  [L,o(2aPe)+ lo(2aPe)-- L:(2aPe)~pe + '1 (2aPe)]j }. !1~ O. x ( < "  1: (89a) 

( a 2a Ixl -- 1 ) ( V ~ X l )  a exp(--Pe/21xl) , (59b) 
U f a r ~  1 21xl + 8Pelxl X err ~ . l/8r~Pelx/ 

1 (1 1 ) (1//--2-P-e) V 2Pe 
y = l ,  x < < - - l :  Ufar~- 2 8Petx[ X e r f \ v  - ~ - - a  ~lxla X 

1 

X S [exp (-- 2 Pe v~/Ixl)] l/v(1 - v)dr. 
o 

For Pe << 1, lpx I << 1 we may  write 

(5%) 

from which there results 

pe << 1, l px ] << 1: 

a 
Pe ~ x'(1 -4- Pe x') (2 2 _)  u -- - -  exp (-- Pe x) = In In l§ dx', (6o) 

a 1 / a S - -  x"  7 Pe 
0 



y = O, X 
2Pc  

x ) )  1: nfa r -  - -  
" g  

oxp< pox, X[(l+ Pe~ +o 
4 y P e  x 4 x  

( 8pea)+ 1(-1+2o2 l + 3 a  
X ~ + -3-- 2x - - - 7  3 -k 16 

Peo )] (61a) 

__2Pe e x p ( P e l x l ) [ ( 1 .  + P e a . ~ ) l  n _ 2  
y = O, x if< - -  1 : Ufa r -  r: 4 ~ Pe  Ix] 

~ , ( + 
r~ + - - P e a  -+ 

4 Ix ]  3 ~ 3 t6 
Pea-)], (61b) 

y = l ,  
X < ~ / -  1: Ufa r -  ~ 4 y P e l x ~  

~ ) ( )] 4-ix I ~ - k 8 p e a  -+-, 1 - - 4 + 2 a 2  + - - 5 + 3 a 2 . P e a ~  . 
3 2x 2 3 .16 

(61e) 

Pe = 

r ' 7 - -  I.~ I I I . . . . . .  ~ Pe :  I0 

t , .o -  ~ s , , s , , , s  / / I . .  i A ,.o ~.i 

. . . . . . .  7 
/ --'" / ~ - - " - / 5 ~ , ,  ,, I I ~ k l  
i .... /.~ .,~'" , ~,~ \, 
~- - - -  / $ /  i / ~ t  ,' I~, N 

u/ui . ~....J~'. - . /  A~:'C_-~" ,, , ~ I 

F ~ . . - I  / , ,,,,: 
<,b---..t . . . .  i- . . . .  r . . . .  l "  I i I / 1 " ' -  
-27 -z2 -,7 - , ,  -7 -2 -, o x ' 2 

Fig. 4. Temperature along the cylinder axis, slab sur- 
face, slab axis, at Values Pe = 10, 1, O. 1 of the Peclet 
number. 

In Fig. 4 we plot for the slab with circular cap the tem-  
perature along the surface and axis (the latter also for the 
cylinder with spherical cap, by the methods of the next sec- 
tion) for Pe = 10-1 1, 10. In Fig. 5 the tip temperature is 
plotted for the slab with elliptical cap and for the cylinder 
with spheroidal cap for various axis ratios a : 1, when (a) 

Pe << 1, (b) Pe >> 1. In Fig. 6 we plot similarly Uor/Ut for 
slab with elliptical cap and cylinder with shperoidal cap. 
The curve of uj/u t is drawn in the same figure for the slab 
with elliptical cap for the case Pe = 10-3 only, because the 
stringent restrictions in (53), (56) do not permit us to draw 
the curves for Pe = 10-1, Pe = 10. Only the a = O, 1 points 
are indicated (by crosses) for these other cases, where d i -  
rect use was made of (51). 

V. The Cylinder with the Spheroidal Cap 

Equation (21c) reduces for a cylinder of radius R = 1, 
having a spheroidal cap 

x ' 2 / a  ~ + r 2 = 1 (r 2 = y "  + z ' )  (62) 

to 

u = - -  d r  exp [ - - P e  (I + x -  x')] d x ' .  (63) 
2~ a ~ -7--  

- - ~  0 

Figure 7 illustrates the case where the point (x, y, z) is on the surface of the spheroid. Then 

l ~ = (x - -  x') 2 -k ( I l l  - -  x " / a  2 - -  r cos q~)2 _~_ r 2 sin 2 qD; (64a) 

while, when (x, y, z) is on the cylindrical portion of the surface, at the junction of cap and cylinder, and on the x axis, 
then 

12 = ( x  - -  x ' )  2 + ( 1 - -  r) 2 + 4r  s i n  2 ~ ,  0, = q0/2, (64b) 

t 2 = 1 + a 2 - -  2r  c o s  q~ -?  r 2 ( 1 - -  aZ), (64c) 
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1 ~ = ( x -  x') ~ + r ~. 
respectively. 

e~,lO p~,lO-~ iO -~ 

. . . . . .  - _,: , ,~0, , ~ r  , ~ . . . . . . . . . . .  _ :  . . . .  : 

. ,  . . . . .  + " '  +"'A 
i 

. . . . . .  ~e '  I0  "~ - -  N , q ]  

0 0 k0 |I+ 0 

F i g .  5.  Dependence of dendrite tip tempera ture  on axis 
rat io  a: 1 (a is in  t r a v e l  d i r e c t i o n )  o f  s p h e r i o d  ( e l l i p s e ) ,  

for Pe  = 10,  10 - t ,  I0 "s. 

(64d) 

+ l l I I I ~ ~. ,'J i I L~I+ I i .I I I 

. . . . . .  CYLINCER u~t/lt! 
SL~Ii ~ / ~ t  s 

w - - - - x  .~l.llll ~j/u+,~e,,lO" 
m o S l ~  Uj/U|  ,P e'lO'i 
�9 �9 SLAI! Ul /Ut,Pe, lO 

. ~ -  ~ 

L+ l t i i |j | ! i i l L i I i I �9 i 
O | ~  110 0 

. r 

Fig. 6. Dependence of %r/Ut,  uj /u t on axis ratio, for 
Pe =I0, I0 "I, I0 "s. 

For the sake of s[mplicLty ~ e  shalI restrict ourselves mostly to axial points (x, 0, 0) ~rhere (68) reduces ro 

Ct 

Pe 1" x" 
u =  a ~ ~ [ ( x - - x ' )  2+r~l  '/, 

0 

,X e x p ( - - P e  ( x - - x '  + l (x - -x ' )~+r~ lV 'J )dx ( .  (6~) 

The only nortaxtal point we shall consider is the junction (.0, 1, 0) of  sphere (a = 1) and cylinder, for which (63), with 

r ~ COSX ( 6 6 )  

becomes 

Pe r 
u = dq~ e x p ( - -  Pe [l~ (1 --r~)'/q)dr= 

o o 

_ Pc:: ; ~ p e ( ~ , ) e x p ( P e s i n L )  sin2)~2X dk, 

o 

C exp { - - P c  {2(I . c o s  ~, cos @)I v, } 
*Pe(~)  = ~ 3 . . . . .  t ~ l ~ - - ~ o ~ r  ~i ..... e+;  

0 

(67a) 

(6~b) 

~Pe (k )  is plotted in Fig. 8. 

The special  case @0 (X) may  be expressed in terms o f  the tabulzted complete  elliptic ~ntegraI of  the first kind, 
K (k') - see [44] formula 982.00: 

~12 

, o ( k )  = 2~+'fo [ 2 - - 2 c o s L  + 4 c o s  ~ + s i n " e ] - - l / ,  d e  = ( s i n  ;~g/2 ) •  

,x/2 

)< ; (1 + n2sin20)-'/,cl~ --- k 
o c o s ~ / 2  K(k ); (68) 

, n ~ 2 cos ~, cos ;~ /22 ~ 2cos~,l(1 - - c o s ~ ) ,  k = - . . . . .  . 
I + n ~ I + c o s  ~. cos ~ L-/2 

Thus we  obtain 

:'+2:/ . . 

..Pe_ (' +~,, 1 ~o+>. • ~ ( v ~ ' ~  d ~. = 0.42,+ p~. 
P e ( ( l :  u i ~  r d 2 " \ c o s k / 2  ] 

0 

(69) 
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For Pe >> 1, and denoting 

we may write 

[2(l-t-cosk) ] 1/2 

= X ~' ~pe (~1 u 
[2( l--cosX ) ]1/.. 

z ----- [2 (1 - - c o s k  cos q0)] 1/, 

[cos k + 1 --.P/21 -v '  [cos k - -  1 q- zV21-'/2 X exp  ( - -  Pe  z) dz 

(70) 

1 , / - ~  X l z 2 - - 2 ( 1 - - c o s ~ , ) l X e x p ( - - P e z ) d z - - -  Ko(2PesinM2) �9 (71) 
(2--2cosX)1/2 

The center expression of CPe is obtained on noting that most of the integral is contributed by the vicinity of z = 
(2-2  cos X)I/2; hence the upper limit may be replaced by % and the factor [cos X + 1-zZ/2] 1/2 byits values (2 cos X) 1/2 

,r 

Fig. 7. Cylindrical dendrite with 
spheroidal cap. 

at the lower limit, The last expression is item !1 of Tables 
I, p. 188. Therefore, with z = 2 Pe sin k / 2 ,  

~/2 

Pe ) )  1- �9 - -  sin k 1/c-o~ ~. X 

0 

X exp(Pesin~,)Ko(2Pesin},/2)d'A. (72) 

Note that at Pe k >> 1, the integrand is exponentially small. 
Numerical integration of this expression for Pe = 10, 10 z, 104 
yields the function plotted in Fig. 2. 

Among the axial points the tip (a, 0, 0) the origin 
(0, 0, 0) and the far-away points ]x l >> 1 are again of principal interest. Writing 

t = t + a - -  x ' ,  x '  = - -  ta  2 -t- a [t 2 (a  ~' - -  1) -f- 2 ta  -t- 111/2 

d x '  ad t  

I [t 2 (a  2 - -  1) + 2ta § 1 ]'h (73) 

(65) becomes, for the tip 

u t = 1 - -  e x p { - -  P e [ a +  (a2 + 1)1'/2} - -  

a-k(a2q-l) '/2 
- - a P e  ,f [ t~(a2--1)+2taq- l l -V2texp(- -Pet )d t .  

0 
(74) 

For the special case of a spherical cap, a = 1, this becomes 

u t = 1 - -  exp  [ - -  Pe  (1 +V-2-)I - -  pe  • 

3/2 1/2 (3+2 ) 

i 
i 

s 2 -  1 
- - .  e x p [ - -  P e ( s  2 -  1)/2]ds = 

1+1 ' / V  (1_ 1)x 
=--2 -2  [ ( 3 + 2 v g v 2 - - 2 ] e x p [ - - ( l  + l / f f ) P e ] §  - P e  

exp  erf (Pe/2)v2 } X ( P e 1 2 ) { e r f [ ( 3 + 2 2 h ) P e t ' / ' - -  
1 2 

1 - - - - q  . . . .  ..., P e ~ l ,  
Pe  Pe 2 

0.942 Pe  - -  0.089 Pe  2 .... Pe  << I. 

For the oblate spheroid, a < 1, we write r = t - a / ( 1  - aZ), and (74) reduces to 

u t = 1 - - e x p  {--  P e [ a  q- (1 q- a2) v2] 
a P e  

} / 1 - - a  2 
_ _ _  exp  ( f- 2 / x 

(75) 

(76) 
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X 

X [arc sin a - -  arc sin g~] [ 1 

gt  (a) ~ [2a ~ + 1 + 2a V" ~ V , ,  

"Va-~+l--a~/( I--a ~ ) 

~ + al( 1 - -  a*) ( _  Pe  v) d �9 = exp [(l - -  a~) - ~ -  ~ ] v ,  
- -a / (  l --a = ) 

a -k- 2a~-- 9aa + ' 3 a ( 1 - a  ~) + .... P e > > l ,  
Pe  Pe  ~ . . Pe  a 

l - - a  2 - - P e  + 

a 2 {g~ (2a --  g~) -s / ,  } ] a S Pe 
"+ (1 - -  a~) 2 _~ + "'" (1 - -  a2) '/= • 

_ (1 + 2 a ) P e  ] 
2(1 - - a  ~) q- . . . . .  Pe  << l, 

g 2 ( a ) - a  a + ( a  2 - 1 )  V l + a  2. 

For the prolate spheroid, a > 1, we write r = t + a/(a 2-1) and formula (74) reduces to 

a p e  e x p (  - a p e  ) X  u, = 1 - -  exp { - -  Pe  [a + 1 / ~  q- 1 ] g . a ~ l  a '  ------i- 

X 

At the origin (x, y, 

t = l - - x ' ,  

the results 

1/~-i-+l+a~/(a'-_l) 

al(a*--l)  

[~: - -  1/(1 - -  a2)2] - ' / ,  [~ - -  al(a*-- 1)l exp  ( - -  Pe  ~)d ~ = 

Pe  [a-{-  ] f ~ -  ,4- 1 + 

X In g 2 §  1/a 2 -  t g~ 

X [2ag--  3 
2 

a a 2 
1 - - - - +  2 ~ - - . . . ,  P e ) ) l ,  

Pe  Pe  2 

a (i - -  ag~) a 2 + • 
a 2 -  1 (a = - 1)v., 

] [g~ a ~ 

x 

g ' g ' )  a(~_+_)/_~2)lng~_~___a]/~zJg'] , 
2 (a S - -  1)/'- a + d ~ - - -  i -r- ..... 

a + V'a'  i 

Pe<< I . . . .  

z) = (0, O, O) we obtain, with 

dx" adt 
t [t=(a ~ -  1) a- llV, 

x' = - -  t a  2 + a [t 2 (a  ~ - -  1) + 11 '/~, 

a - -  l: Uor= 1 ~  
1 - -  e x p ( - -  Pe)  

Pe  

a < l :  

a >  1: 

1 p e  

Uor ~ { 

I 

§ 

a [ l ~ 3 ( 1 - - a ~ ) - } - . . . ]  P e ' > > l ,  
P e  P C  ' 

Pea  ~arc sin (1 - -  a2) a}_k ] Pe<(1 
2 ( 1 - - a )  t g ~  . . . . .  

[1 a(a=--l) +-...],pe>>l, 
Pe  Pe  = 

P e a  / ln (a  +V~a-~- l) _F a} _t_ . . . .  ] 
2 (a - -  1) t I / a ' - -  1 

P e r <  1. 

a 
I 

pe [I 1 + 

(77) 

(78) 

(79) 

(80a) 

(SOb) 
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Finally, 

we obtain 

and ~nd 

for Ix ] >> 1, noting 

x,+, I 
_ _  _ _  . ~  , 

x 2 x e 
(sL) 

ae__i_u ix] /a g! e x p [ - - 2 P e ( " - - x ) i L x  q- x d x ' , x > 0 ,  

Pe "exp[ ( P e / 2 ] x l ) ( 1 - - x ~ / a ~ ) ]  x'  ' 
0 ] 7  d x ;  x < 0 ,  

x),>l" u~--- a + - -  X a ~ - _ +  exp (2Pea )+  
2a 2 x 2Pe x Pe 

1 1 i 
+ } (83a) 

2 P e  2 P e  ~ x ~ ' 

x<<-- 1: u~--~-l--exp(--~,) aPe exp(--},)Y +-~-  7-7~. + 9.3----7-q- . . . .  ~,~ -. 
~'~ 2 lx I 

(88b) 

In (83b) we have made  the additional assumption that Pe/} x 13 is negligible. 

VI. Summary 

One of the objectives of the study was to exhibit the use of traveling heat source method in solution of dendrite 

F 

tl7"" ~ 10 

tff" - ' ~ ~  2 ~  ~ @Pe(X) 

t~ "e f '  
o Otrr 0.,mr 02~r O~ 

Fig. 8. The auxiliary function ~pe0V). 

growth problems. Another was to elucidate Fisher's estimate of the t e m -  
perature of a dendrite with hemispherical  head and cylindrical tail. 
Plausibility arguments suggest that, at low velocities, the heating up of 
the dendrite should be proportional to the speed of growth; Fisher speci-  
fied the numerical  constant, on the basis of back-of -an-enve lope  cal -  
culation, in the formula 

(c/X) (Tti p - Too] : u t : Pe : RV/2~ 

The rigorous results, established in this report, barely modifies the va l -  
ue to 0.94 Pe. It was also shown that, at very high speeds, ut approaches 
1. In addition, some further particulars of the temperature field were 
determined both at small velocities (Pc << 1) and at large velocities 
(Pc >> 1), and in some instances also at intermediate velocities; for both 
two- and three-dimensional  geometries,  not only for circular heads, 
Figs. 2 and 4, but also for e l l ip t icalheads,  Figs. 5 and 6. 
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